
OR I G I N A L A R T I C L E

Are methamphetamine users compulsive? Faulty
reinforcement learning, not inflexibility, underlies decision
making in people with methamphetamine use disorder

Alex H. Robinson1 | José C. Perales2 | Isabelle Volpe3,4,5 |

Trevor T.-J. Chong1 | Antonio Verdejo-Garcia1

1Turner Institute for Brain and Mental Health,

Monash University, Melbourne, Victoria,

Australia

2Department of Experimental Psychology,

Mind, Brain, and Behavior Research Center

(CIMCYC), University of Granada, Granada,

Spain

3Clinical and Social Research Team, Turning

Point, Eastern Health, Melbourne, Victoria,

Australia

4Eastern Health Clinical School, Monash

University, Melbourne, Victoria, Australia

5Monash Addiction Research Centre, Monash

University, Melbourne, Victoria, Australia

Correspondence

Antonio Verdejo-Garcia, Turner Institute for

Brain and Mental Health, Monash University

18 Innovation Walk, Clayton VIC 3800,

Australia.

Email: antonio.verdejo@monash.edu

Funding information

Australian Government Research Training

Program Scholarship; Australian Medical

Research Future Fund Next Generation of

Clinical Researchers Fellowship, Grant/Award

Number: MRF1141214

Abstract

Methamphetamine use disorder involves continued use of the drug despite negative

consequences. Such ‘compulsivity’ can be measured by reversal learning tasks, which

involve participants learning action-outcome task contingencies (acquisition-

contingency) and then updating their behaviour when the contingencies change

(reversal). Using these paradigms, animal models suggest that people with metham-

phetamine use disorder (PwMUD) may struggle to avoid repeating actions that were

previously rewarded but are now punished (inflexibility). However, difficulties in

learning task contingencies (reinforcement learning) may offer an alternative explana-

tion, with meaningful treatment implications. We aimed to disentangle inflexibility

and reinforcement learning deficits in 35 PwMUD and 32 controls with similar

sociodemographic characteristics, using novel trial-by-trial analyses on a probabilistic

reversal learning task. Inflexibility was defined as (a) weaker reversal phase perfor-

mance, compared with the acquisition-contingency phases, and (b) persistence with

the same choice despite repeated punishments. Conversely, reinforcement learning

deficits were defined as (a) poor performance across both acquisition-contingency

and reversal phases and (b) inconsistent postfeedback behaviour (i.e., switching after

reward). Compared with controls, PwMUD exhibited weaker learning (odds ratio

[OR] = 0.69, 95% confidence interval [CI] [0.63–0.77], p < .001), though no greater

accuracy reduction during reversal. Furthermore, PwMUD were more likely to switch

responses after one reward/punishment (OR = 0.83, 95% CI [0.77–0.89], p < .001;

OR = 0.82, 95% CI [0.72–0.93], p = .002) but just as likely to switch after repeated

punishments (OR = 1.03, 95% CI [0.73–1.45], p = .853). These results indicate that

PwMUD's reversal learning deficits are driven by weaker reinforcement learning, not

inflexibility.
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1 | INTRODUCTION

People with methamphetamine use disorder (PwMUD) continue to

use methamphetamine despite experiencing growing negative conse-

quences from their drug use (i.e., mental/physical illness, legal and

financial problems, relationship loss).1,2 This behaviour is defined as

compulsive substance use and is a hallmark of addiction.3 Internation-

ally, there are concerns that the prevalence of methamphetamine use

disorder (MUD) is increasing, particularly due to the growing availabil-

ity of high-purity crystal methamphetamine and its related harmful

patterns of use.4,5 Furthermore, although current treatments reduce

short-term methamphetamine use and psychological distress,6 most

clients relapse within 1 year of treatment.7,8 This difficulty in control-

ling drug use warrants a more nuanced understanding of ‘compulsiv-

ity’ amongst PwMUD.

While several cognitive processes likely underlie compulsive

behaviour (i.e., habit formation, avoidance),9 contingency-based

cognitive inflexibility appears the most prominent cognitive driver

of compulsivity in addiction.10 This is because inflexibility refers to

a difficulty in updating behavioural responses that were initially

associated with reward but are now associated with punishment.10

It is defined separately from more basic reinforcement learning def-

icits, which involve the ability to learn which actions or stimuli are

associated with obtaining reinforcers.11 Contingency-based inflexi-

bility has typically been measured using reversal learning tasks,

whereby initial stimulus-outcome associations are learnt (either

implicitly or explicitly; acquisition phases) and then changed

throughout the measure (reversal phases).10,12 Errors in the reversal

phase (i.e., responding to previously reinforced stimuli post-reversal)

are often used as the behavioural index for inflexibility on these

paradigms.12

Previous research using reversal learning tasks has extensively

examined the effects of methamphetamine exposure in rodents and

non-human primates. Amongst these individuals, weaker reversal

learning has been frequently reported and interpreted as an indication

towards broader inflexibility and/or compulsivity.13–19 In addition,

abnormal performance on these paradigms has been linked to dys-

regulation of striatal dopamine (D2-type) and frontal serotonin sys-

tems likely caused by methamphetamine consumption.15,19

However, despite the consistent cross-species evidence for

inflexibility and the popularity of the compulsivity account of meth-

amphetamine addiction, only one study has examined contingency-

based reversal learning in humans.20 This work also found worse

reversal learning performance amongst PwMUD, when compared

with healthy controls. However, closer inspection of learning rates

also suggested that PwMUD made more errors in the tasks' acquisi-

tion phase, indicating that PwMUD may instead have fundamental

deficits in reinforcement learning. Reappraisal of the animal literature

also suggests reinforcement learning deficits versus (or in addition to)

inflexibility.17,19,21 For example, weaker reversal performance by

methamphetamine-treated monkeys can be alleviated when

given enough practice to master their knowledge of acquisition

contingencies.17

Understanding whether PwMUD have deficits in reinforcement

learning and/or cognitive inflexibility is important for several reasons.

From a treatment perspective, the improvement of either construct

requires different, targeted approaches. For example, reinforcement

learning difficulties may benefit from the implementation of contin-

gency management (CM) programmes,22 which may overcome partici-

pants' weakened learning responses via more immediate and/or

obvious reinforcements. In contrast, cognitive inflexibility may

require extinction/response prevention therapies, such as cognitive

behavioural therapy (CBT).23 From an ethical standpoint, describing

someone's learning as inflexible (or drug use as ‘compulsive’) may be

more likely to generate feelings of hopelessness among patients and

clinicians, relative to a perspective of reduced learning.24

Unfortunately, prior research using reversal learning tasks may

have used methods which conflated cognitive inflexibility and rein-

forcement learning. This is because appropriate reversal learning

requires the ability to (a) initially learn task contingencies (reinforce-

ment learning) and (b) update behaviour when contingencies change

(cognitive flexibility). Thus, traditional measures (i.e., errors in reversal

phase)12 are likely impacted by both processes.

To amend this, and thus disentangle inflexibility and reinforce-

ment learning deficits, we conducted detailed novel trial-by-trial anal-

ysis of a reversal learning task amongst a cohort of PwMUD. We

reasoned that inflexibility would manifest as (a) a significant reduction

in learning rates between the acquisition-contingency and reversal

phases, whereby the latter shows significantly poorer learning, and

(b) the maintenance of a certain action despite receiving multiple

instances of punishment. In contrast, reinforcement learning deficits

would manifest as (a) consistently poor learning rates across both

acquisition-contingency and reversal phases and (b) an inconsistent

pattern of behaviour after feedback (i.e., increased switching after

reward/punishment). Based on prior clinical research in PwMUD20

and detailed models of learning/inflexibility in nonhuman primates,17

we hypothesised that PwMUD's behaviour on the reversal learning

task would reflect reinforcement learning deficits, rather than cogni-

tive inflexibility, compared to drug-naïve controls.

2 | MATERIALS AND METHODS

2.1 | Design

Cross-sectional, observational design to characterise differences

between PwMUD and drug-naïve controls on a reversal learning task.

2.2 | Participants

Thirty-five PwMUD (MAge = 33.26, standard deviation [SD] = 7.78, 24

males) were compared with 32 drug-naïve controls (MAge = 31.44,

SD = 9.54, 20 males). PwMUD were recruited from public and private

drug and alcohol treatment services across Melbourne, including inpa-

tient detoxification/rehabilitation and outpatient counselling settings.
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The key criterion for inclusion of PwMUD was admission into treat-

ment for methamphetamine use. However, two PwMUD had yet to

formally commence treatment, and we based their inclusion on scores

>4 on the Severity of Dependence Scale for methamphetamine

dependence.25,26 Table 1 presents PwMUD's patterns of metham-

phetamine consumption and treatment information, while Table 2

reports PwMUD's secondary substance and medication use. All

PwMUD reported crystal methamphetamine as the predominant form

used. Drug-naïve controls with similar sociodemographic characteris-

tics (sex, age, education, IQ) were recruited using online and commu-

nity advertisements. Exclusion criteria for all participants included

diagnosis of schizophrenia or intellectual disability. PwMUD were

required to have been abstinent for longer than 48 h but less than

12 months.

2.3 | Procedure

The Eastern Health Human Research Ethics Committee approved the

study (E52/1213). Recruitment occurred between June 2017 and

September 2018. We tested PwMUD at their treatment facility and

controls at Monash University. However, when these premises were

not convenient, we also used community libraries. Participants were

TABLE 1 Descriptive statistics of sociodemographic and methamphetamine use characteristics in PwMUD and drug-naïve controls

Demographics PwMUD Controls Test statistic Bayes factor

Sex (F/M) 11/24 12/20 χ2 = .027, p = .60

Age 33.26 (7.78) 31.44 (9.54) U = 460.5, p = .21 BF10 = 0.44

Years of education 14.06 (2.15) 15.00 (2.11) U = 699, p = .078 BF10 = 1.75

Verbal IQ 109.29 (5.46) 108.78 (6.29) U = 562.5, p = .98 BF10 = 0.27

Depression (CES-D) 19.83 (11.79) 9.22 (6.66) U = 220, p < .001 BF10 = 615.90

Meth. Use (PwMUD only) M (or N) SD (or %) Range

Severity of dependence (SDS) 9.97 3.05 [4–14]

Daily dose (grams) 0.44 0.29 [0.10–1.50]

Frequency (days/month) 19.54 10.34 [3–31]

Duration (years) 8.56 5.34 [0.58–22]

Last use (days) 37.48 44.81 [3–180]

Treatment type

Inpatient rehab 23 65.71% -

Outpatient Counselling 6 17.14% -

Multiple 4 11.43% -

No treatment 2 5.71% -

Route of admin.

Smoking 32 91.4% -

Injecting 3 8.6% -

Note: Two PwMUD also reported HIV + status. SDS scores can range between 0 and 15; with those above 4 indicating likely MUD.26

Abbreviations: CES-D, Centre for Epidemiologic Studies Depression Scale; PwMUD, people with methamphetamine use disorder; SDS, Severity of

Dependence Scale.

TABLE 2 Additional substance and medication use amongst
PwMUD

N (or M) % (or SD)

Other illicit subs. use

Cannabis 10 28.57%

GHB 8 22.86%

MDMA 6 17.14%

Cocaine 4 11.43%

Heroin 1 2.86%

SDS alcohol 1 2.70

SDS cannabis 1.6 3.20

Prescribed medication

Anti-dep 11 31.43%

Anti-psychotic 4 11.43%

Anti-convulsive (lamotrigine) 1 2.86%

Benzodiazepine (diazepam) 1 2.86%

Note: Other Illicit Substance Use refers to substances taken more than

10 times in the past 12 months. Scores can range between 0 and 15. Anti-

Dep includes escitalopram, sertraline, fluoxetine, mirtazapine, venlafaxine,

duloxetine. Anti-Psychotic includes aripiprazole and quetiapine.

Abbreviations: PwMUD, people with methamphetamine use disorder;

SDS, Severity of Dependence Scale.
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screened before undergoing a standardised assessment session which

lasted between 1 and 1.5 h. Reimbursement included a $20 (AUD)

gift card.

2.4 | Measures

2.4.1 | Sociodemographic and mental health
characteristics

Participants self-reported their age and education, while IQ and intel-

lectual disability were assessed/screened using the National Adult

Reading Test (NART).27 Depressive symptomatology was assessed

using the Centre for Epidemiologic Studies Depression Scale (CES-D).28

2.4.2 | Methamphetamine use

Frequency of methamphetamine consumption in the last month of

use was collected using The Timeline Follow Back interview (TLFB).29

PwMUD's degree of methamphetamine dependence was assessed

using the Severity of Dependence Scale (SDS). 25,26

2.4.3 | Cognitive inflexibility vs. reinforcement
learning

The Probabilistic Reversal Learning Task (PRLT)30,31 is a computerised

measure that requires participants to learn which of two different

coloured squares is more rewarding (see Figure S1 for task diagram).

On each trial, participants were presented with two coloured squares

(one red and one green; all participants denied colour-blindness) on

the left and right of the screen (randomly allocated). They were

informed that, on any given trial, one square was ‘correct’ (i.e., usually
associated with a gain of two points and a positively valenced ‘win-

ning chime’ sound), while the other was ‘incorrect’ (i.e., usually associ-

ated with a loss of two points and a negatively valenced ‘boh!’
sound). Participants were instructed to select the square they believed

was the more frequently rewarded stimulus based on the feedback

that they received to that point. After making their response, they

then received feedback on their choice, and the next trial would then

be presented without an intertrial interval.

Overall, the task was separated into four, 40-trial phases. Phases

one and three were acquisition-contingency phases, whereby partici-

pants attempted to learn the initial contingencies and reinforcement

probabilities associated with each square. Phases two and four were

reversal phases, whereby the rewarding/punishing elements of the

stimuli were switched, and participants had to update their behaviour.

In the first two phases, the reward/punishment rates were set at

80/20% for the correct square and vice-versa for the incorrect square.

In the final two phases, the reward/punishment rates changed to

70/30%.31,32 All phases immediately followed one-another, with no

breaks or signalling to participants.

The PRLT has been frequently used in prior addiction

research.31,32

2.5 | Statistical analysis

To achieve our aim of disentangling reinforcement learning and inflex-

ibility on the PRLT, our analyses focused on exploring behaviour

related to accuracy (i.e., selecting the correct stimulus) and feedback

(i.e., reward or punishment), across both shorter (i.e., individual trials)

and longer time frames (i.e., across phases or multiple trials). As such,

our main analyses are divided into two sections: (a) Trial-By-Trial Per-

formance Across and Within Phases and (b) Switch/Stay analyses.

How we used each section to investigate inflexibility or reinforcement

learning deficits are described in the relevant discussions below. For

both of these approaches, we used a recommended series of General-

ized Mixed-Effects Model stepwise (backward deletion) compari-

sons.33 Briefly, this involved comparing models in a hierarchical order

(using AIC/BIC as the measures of model fit measures), beginning with

a ‘saturated model’ (a model including all possible relevant effects).

This ‘saturated model’ was then compared to a simpler model which

includes all the same predictors, except for the most complex effect/

interaction. If the reduced model was of equal or better fit, it was then

used for comparison with a further simplified version. We present

results from both ‘saturated’ and any ‘best-fitting’ models to conser-

vatively confirm results. We used the lme4 package34 in R35 to create

the models, while relevant quantitative predictors were zero-centred,

and p values obtained via z-test approximations. Alpha was set at

α = .05 for main analyses and α = .017 for post-hoc contrasts due to

multiple comparisons. Potential confounders (i.e., age, education, IQ

and depression) were compared using Mann–Whitney U-tests and

Bayes Factors in JASP.36 To corroborate our main results, we applied

a more traditional analysis of variance (ANOVA) and t test approach,

which is described in the relevant results (Section 3.4). We also con-

ducted control analyses to investigate if attention, motivation, sever-

ity of methamphetamine dependence and severity of any potential

comorbid cannabis dependence were impacting PwMUD's behaviour

(Section 3.5).

2.5.1 | Trial-by-trial performance across and within
phases

These analyses investigated group differences on trial-by-trial accu-

racy within and across phases. Model construction began by assuming

that participants' within-phase learning curves were negatively accel-

erated (a trend previously observed on PwMUD's choice data when

performing reversal learning20). Essentially, this theorises that early

experiences contribute the most information when learning new

behaviours.37 To achieve this, we modelled Accuracy (choosing cor-

rectly or not on each trial) as a binomial variable (using a logit link

function) and logarithmically transformed trial (so that the underlying

learning process is assumed to be linear relative to log-trial). This
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transformation of the effect of trial outperformed both its original lin-

ear counterpart and a polynomial-based approach (another way to

model negatively accelerating curves, see Supporting Information).

Therefore, further mentions of ‘Trial’ will reference the use of this

logarithmic transformation.

After this, we defined accuracy as the output variable for these

analyses and built models using a mixture of the following fixed

effects: Phase (1–4), Trial within Phase (1–40), Group (PwMUD

vs. drug-naïve controls) and any relevant covariates and interactions.

Participant was always included as a random intercept.

To test inflexibility, we included a set of contrasts which

investigated different patterns of change in accuracy rates across

phases. The main contrast of interest, C1 (1, −1, 1, −1), compared

phases one and three (acquisition contingencies) versus phases two

and four (reversed contingencies). Contrast C2 (1, 1, −1, −1)

modelled the effect of contingency degradation in the second half

of the task (i.e., 80/20% versus 70/30% phases). Contrast C3

(1, −1, −1, 1) was theoretically irrelevant, but included to ensure

the contrasts were comprehensive and orthogonal.38 C1 is

presented in the results section, while C2 and C3 are reported in

Table 3. To aid in interpretation, a significant odds ratio (OR) > 1

for C1 would indicate that correct responses were more likely in

phases one and three, relative to two and four (i.e., evidence that

participants are showing reversal cost). In group interactions,

greater inflexibility by PwMUD, relative to controls would be indi-

cated by a C1 × Group OR > 1.

In contrast, to test reinforcement learning difficulties in these

analyses, we used the Group × Trial interaction. This investigates

whether groups showed differences in their accuracy across the trials

(i.e., accuracy should increase with the number of trials). An OR < 1

would indicate towards PwMUD exhibiting weaker learning, relative

to controls.

TABLE 3 Comprehensive statistics for the saturated and best-fitting model (trial-by-trial performance)

Predictors

Saturated model Best-fitting model

Odds Ratios CI p Odds Ratios CI p

Intercept 3.31 2.67 – 4.10 <.001 3.27 2.65 – 4.05 <.001

Group 0.54 0.39 – 0.73 <.001 0.54 0.40 – 0.74 <.001

Depression 1.08 0.93 – 1.26 .311 1.08 0.93 – 1.26 .308

Trial 1.96 1.82 – 2.10 <.001 1.94 1.81 – 2.08 <.001

Phase

C1 1.32 1.23 – 1.41 <.001 1.24 1.19 – 1.30 <.001

C2 1.31 1.22 – 1.41 <.001 1.27 1.21 – 1.33 <.001

C3 1.20 1.12 – 1.29 <.001 1.20 1.15 – 1.25 <.001

Phase x Trial

C1 x Trial 0.93 0.87 – 1.00 .049 0.93 0.89 – 0.98 .002

C2 x Trial 1.06 0.99 – 1.14 .075 1.06 1.02 – 1.11 .005

C3 x Trial 0.82 0.77 – 0.88 <.001 0.87 0.83 – 0.91 <.001

Trial x Depression 0.98 0.93 – 1.03 .412 0.98 0.93 – 1.03 .408

Group x Phase

C1 x Group 0.91 0.83 – 0.99 .032

C2 x Group 0.95 0.86 – 1.03 .225

C3 x Group 0.99 0.91 – 1.09 .858

Group x Trial 0.69 0.62 – 0.76 <.001 0.69 0.63 – 0.77 <.001

Group x Phase x Trial

C1 x Group x Trial 1.00 0.92 – 1.10 .939

C2 x Group x Trial 1.01 0.92 – 1.10 .886

C3 x Group x Trial 1.11 1.02 – 1.22 .016

Random Effects

σ2 3.29 3.29

τparticipant 0.29 0.28

ICC 0.08 0.08

Note: Bolded p-values are viewed as significant (≤.05 in typical analyses, ≤.0167 in contrasts). C1 (1, -1, 1, -1) compares acquisition-contingency to reversal

phases; C2 (1, 1, -1, -1) compares easy and hard phases; C3 (1, -1, -1, 1) is theoretically irrelevant, necessary to complete contrasts and compares phases 1

and 4 with phases 2 and 3.
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2.5.2 | Switch/stay analysis

These analyses aimed to investigate group differences on shifting

after reward and punishment, the latter reflecting inflexibility. The

dependent variable was defined dichotomously as Stay (0; repeating

the previous choice) or Switch (1; making a different choice to the

previous trial). The main predictor was Accumulated Feedback. This

was coded as 3 (three consecutive punishments whereby participant

did not change response in the last two trials), 2 (two consecutive

punishments whereby participant did not change response in the last

trial), 1 (previous trial punished) and 0 (previous trial rewarded). The

best fitting model was selected using a combination of the following

effects: Accumulated Feedback, Group and any relevant covariates.

Participant was entered as a random intercept.

Three new contrasts examined differences in Accumulated

Feedback. C1 (−3, 1, 1, 1) compared behaviour after one reward to

one/two/three instances of consecutive punishments. C2 (0, −2, 1, 1)

compared behaviour after one punishment to two/three consecutive

punishments. C3 (0, 0, −1, 1) compared behaviour after two consecu-

tive punishments to three consecutive punishments. For interpreta-

tion, ORs > 1 for C1, C2 and C3 would indicate that participants are

(C1) more likely to switch after any amount of accumulated negative

feedback relative to reward (or less likely to switch after reward com-

pared to any accumulated negative feedback); (C2) more likely to

switch after two or three instances of accumulated negative feedback

relative to a single instance (or less likely to switch after one negative

accumulated feedback compared to two or three) or (C3) more likely

to switch after three instances of accumulated negative feedback rela-

tive to two (or less likely to switch after two negative feedbacks com-

pared to three). In the Contrast × Group interactions, ORs > 1 would

indicate that such contrast effects are larger for PwMUD, and

ORs < 1 would indicate the contrast effects are larger in controls. Evi-

dence towards inflexibility would be manifest if PwMUD were more

likely to repeat actions despite multiple negative feedbacks, relative

to controls (statistically, C3 OR > 1 and C3 × Group OR < 1). Evidence

toward reinforcement learning deficits would be primarily manifest if

the PwMUD group were more likely to switch after reward, relative

to controls (statistically, C1 OR > 1, C1 × Group OR < 1).

3 | RESULTS

3.1 | Descriptive statistics between groups

Groups were matched in sex, age, education and IQ, but not for

depression scores (Table 1) which were added as a covariate in subse-

quent analyses.

3.2 | Trial-by-trial performance across and within
phases

Figure 1 displays the observed proportion of correct responses for

each phase and trial of the task, and each group. Visually, drug-naïve

controls showed steeper learning functions in all phases, as well as

greater ‘reversal costs’ at the start of each phase. Such observations

likely reflect that controls were performing more accurately by the

end of each phase, and therefore required a greater adjustment of

their behaviour after reversal.

To identify which variables best explained these group differ-

ences we began the model comparisons (see Table 4 for comparisons

and Table 3 for statistics of saturated and best-fitting models). First,

we checked whether there were indeed learning differences between

PwMUD and controls. As such, a ‘Saturated No-Group-Learn’ model

and a ‘Saturated Group-Learn’ model were compared. The Saturated

No-Group-Learn Model included Accuracy as the outcome variable;

F IGURE 1 Observed percentage
of correct responses as a function of
phase, trial, and group. The dots
represent the observed percentage of
correct choices at each trial per group
(statistically, a function of phase, trial
and group). The lines represent
logarithmic trendlines maximising the
fitting for each phase and group
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Participant as a random intercept; and the following fixed-effects:

Trial, Phase, Depression, Phase × Trial and Depression × Trial (the

only Depression interaction identified in prior analysis). The Saturated

Group-Learn Model included all the No-Group factors as well as all

relevant Group effects and interactions (Group, Group × Phase,

Group × Trial and Group × Phase × Trial). When compared, the

Saturated Group-Learn Model provided a better fit, indicating that

group effects/interactions likely described our data.

We then attempted to remove any unnecessary effects from the

Saturated Group-Learn Model, beginning with the most complex

interactions. Simplified Group-Learn Model 1 removed the three-way

interaction (Group × Phase × Trial) without losing fit and was thus

used for the following comparisons. Removal of Group × Trial

(Simplified Group-Learn Model 2.1) and Phase × Trial (Simplified

Group-Learn Model 2.3) reduced fit, meaning these predictors were

useful in explaining participants behaviour. In contrast, removal of

Group × Phase (Simplified Group-Learn Model 2.2) did not reduce

model fit and was removed due to parsimony. In this manner, Simpli-

fied Group-Learn Model 2.2 became the best-fitting model.

Because Simplified Group-Learn Model 2.2 did not include the

interactions of Group × Phase and Group × Phase × Trial, it appeared

there were no differences between PwMUD and controls in their per-

formance between phases (i.e., no inflexibility). In contrast, the reten-

tion of the Group × Trial interaction (OR = 0.69, 95% confidence

interval [CI] [0.63–0.77], p < .001) suggested that PwMUD had diffi-

culties in learning action–outcome associations throughout the entire

task (i.e. reinforcement learning deficits).

To confirm these results, we also examined the Saturated Group-

Learn Model which retained the relevant contrast interactions within

Group × Phase and Group × Phase × Trial. While the primary contrast,

C1, was significant (OR = 1.32, 95% CI [1.23–1.41], p < .001), indicat-

ing a reduction in accuracy between acquisition-contingency and

reversal phases across all participants, it did not interact with Group

(OR = 0.91, 95% CI [0.83–.99], p = .032; α = .016 for post-hoc con-

trasts) or Group × Trial (OR = 1.00, 95% CI [0.92–1.10], p = .939).

Notably, the trending interaction between C1 × Group indicated in

the opposite direction to inflexibility amongst PwMUD (indicating

either a floor effect due to poor baseline learning, or that PwMUD

were indeed more flexible).

3.3 | Switch/stay analysis

Saturated Group Switch and Saturated No-Group Switch models were

built and compared, based on a similar rationale to the previous

section (see Table 5 for model comparisons and Table S1 for statistics

of saturated and best-fitting models). The Saturated No-Group

Switch Model included Switch/Stay as the output variable,

Participant as a random intercept and the following fixed-effects

predictors: Accumulated Feedback, Depression and Accumulated

Feedback × Depression. The Saturated Group Switch Model included

all these predictors plus all Group-relevant predictors/interactions and

was again the better fit.

Simplified Group Switch Model 1 removed the three-way interac-

tion (Accumulated Feedback × Group × Depression), retained model

fit and was used for further comparison. However, removal of the

Accumulated Feedback × Group interaction did reduce fit (Simplified

Group Switch Model 2), indicating a substantial contribution of this

TABLE 4 Fitting indices for models analysing trial-by-trial performance across and within phases (reversal learning inflexibility)

Model df AIC BIC χ2 p

Saturated no-group-learn 11 12,276 12,356

Saturated group-learn 19 12,214 12,352 77.689 <.001 (group > no-group)

Simplified group-learn 1 16 12,214 12,343 5.818 .121 (1 ≥ saturated)

Simplified group-learn 2.1 15 12,266 12,376 54.622 <.001 (2.1 < 1)

Simplified group-learn 2.2a 13 12,214 12,330 6.494 .090 (2.2 ≥ 1)

Simplified group-learn 2.3 13 12,262 12,357 54.409 <.001 (2.3 < 1)

Note: p values correspond to contrasts regarding the superiority of the more complex model relative to the simpler one. See text for a description of model

compositions.
aBest-fitting model.

TABLE 5 Fitting indices for models involved in analyses of sensitivity to accumulated feedback (switch/stay analysis)

Model df AIC BIC χ2 p

Saturated no-group switch 9 11,328 11,394

Saturated group switch 17 11,301 11,424 43.431 <.001 (group >no-group)

Simplified group switch 1a 14 11,297 11,399 2.2828 .516 (1 > saturated)

Simplified group switch 2 11 11,322 11,402 30.814 <.001 (1 > 2)

Note: p values correspond to contrasts regarding the superiority of the more complex model relative to the simpler one. See text for a description of model

compositions.
aBest-fitting model.
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interaction and identifying Simplified Group Switch Model 1 as the

best-fitting model.

In Simplified Group Switch Model 1, Group interacted with both

C1 (comparing switch/stay after one reward to one/two/three pun-

ishments; OR = 0.83, 95% CI [0.77–0.89], p < .001) and C2 (comparing

switch/stay after one punishment to two/three punishment;

OR = 0.82, 95% CI [0.72–0.93], p = .002). There was no significant

group interaction when comparing two/three cumulative punishments

(OR = 1.03, 95% CI [0.73–1.45], p = .853).

Such results indicated that PwMUD were more likely to switch

after a single instance of reward/punishment compared with controls

but were no more likely to switch after two or three consecutive

punishments. This appeared to again rebuke inflexibility amongst

PwMUD and further indicate towards reinforcement learning

abnormalities.

When comparing these results with the original Saturated Group

Switch Model, we also found similar findings, with significant interac-

tions between C1 × Group (OR = 0.81, 95% CI [0.74–0.87], p < .001),

C2 × Group (OR = 0.77, 95% CI [0.67–0.90], p = .001) but not

C3 × Group (OR = 0.91, 95% CI [0.61–1.35], p = .629).

Figure 2 presents overall switch/stay behaviour by group, using

predicted values from the Saturated Group Switch Model.

3.4 | Traditional analyses of reversal learning

We also compared our original analyses with two ‘traditional’
approaches for reversal learning data. The first compared the number

of errors in both acquisition-contingency and reversal phases between

PwMUD and controls. We found that PwMUD made significantly

more errors in both acquisition-contingency (PwMUD: M = 26.23,

SD = 9.64, Controls: M = 18.31, SD = 10.41; t (65) = 3.23, p = .002)

and reversal phases (PwMUD: M = 32.09, SD = 9.74, Controls:

M = 25.59, SD = 11.11; t (65) = 2.49, p = .013). These results mirror

our original findings whereby PwMUD exhibited performance deficits

throughout the task.

We also compared our analyses to a Mixed-ANOVA-based

approach, previously used in people with Cocaine and Gambling Dis-

orders on the PRLT.39 Factors were the same as our modelling

approach, except that Trial was replaced with Block (a grouping of

8 trials, 5 blocks per phase), and the dependent variable was the num-

ber of correct responses per block, ranging from 0 to 8. The results

(see Table S2 for comprehensive statistics) again support our original

findings, with the effect of Block differing across groups, F(2.50,

162.27) = 7.32, p < .001; akin to weaker learning in the PwMUD

group, but with the effect of Phase not being different across groups,

F(2.77, 180.31) = 0.15, p = .92; which reveals no difference in inflexi-

bility between groups, or any three-way interaction, F(9.44,

613.75) = 1.07, p = .39.

3.5 | Control analyses

After obtaining these results, we then conducted further analyses to

(a) ensure our findings were not due to factors such as inattention or

disengagement from our PwMUD participants and (b) investigate the

impact of common clinical covariates (Severity of Dependence of

methamphetamine and cannabis and Time Since Last Use of metham-

phetamine) on PwMUD's performance. We found that (a) PwMUD

and controls had similar attention and motivation during the PRLT

(indicated by nonsignificant differences in overall reaction times and

choice-outcome behaviour consistent with learning); (b) the pattern

identified in PwMUD (weak learning and increased switching) was

exacerbated in more severe users, though time since last use had no

significant effects on performance and (c) severity of any comorbid

cannabis dependency were not impacting accuracy or stay/switch

behaviour amongst PwMUD. These analyses are provided in the

Supporting Information.

F IGURE 2 Predicted percentage of changed
response (and confidence intervals) in the current
trial as a function of accumulated feedback. This
figure visualises the predicted percentage of each
groups' switch/stay behaviour for each level of
the accumulated feedback predictor, in the
saturated model (see Table S1). This is achieved
by tuning the saturated model's parameters using
a maximum likelihood approach in order to best
approximate participants observed choices.
Results are similar across visualisations in
observed, best-fitting and saturated versions of
this figure
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4 | DISCUSSION

This study aimed to disentangle the contribution of reinforcement

learning and inflexibility (as a proxy of compulsivity) to reversal learn-

ing performance in PwMUD, compared with drug-naïve controls. We

found that PwMUD deficits were due to weaknesses in reinforcement

learning, as demonstrated by (a) poorer learning rates across the task

and (b) a more inconsistent pattern of behaviour after feedback

(i.e., greater switching after one instance of reward/punishment). In

contrast, our results did not support inflexibility, as PwMUD (a) did

not have a greater decline in their accuracy after the reversal of task

contingencies and (b) did not perseverate after repeated punishments.

Together, these findings challenge the prevailing view that MUD is

associated with inflexibility.

While these findings conflict with reports of inflexibility in animal

models of MUD,13–16,18 they do align with previous research in

PwMUD. Specifically, our detection of overall weaker learning trajec-

tories is consistent with the only other reversal learning study

amongst PwMUD.20 Furthermore, PwMUD also exhibit poor perfor-

mance on other decision-making tasks that involve learning action-

outcome relationships (i.e., Iowa Gambling Task),40,41 as well as

decreased dopaminergic populations in critical regions for reinforce-

ment learning.42 As such, we believe the discrepancy between our

results and previous preclinical reports may be due to potential meth-

odological oversights regarding the impact of reinforcement learning

in non-human studies. This may have occurred because researchers:

used reversal errors as the primary measure of inflexibility,14 trained

the acquisition phase before methamphetamine administration13,18 or

selected performance thresholds that may not capture ‘well-learnt’
behaviour (i.e., 70% of trials correct).15,16 Furthermore, due to the rel-

atively small number of PRLT studies in clinical Substance Use Disor-

der populations, it is difficult to determine whether the deficits we

have observed are unique to methamphetamine or generalise across

other substances. For example, there is evidence supporting abnormal

learning trajectories32,39 and increased switching behaviour43 in peo-

ple with Cocaine and mixed Stimulant Use Disorders. However, sup-

port against the presence of inflexibility has been more varied, with

mixed results in people with Cocaine Use Disorder,39,44 and evidence

against inflexibility in Amphetamine and Opioid Use Disorders.44

Our identification of increased switching after both reward and

punishment also provides clues towards which specific dysfunctional

processes may underline PwMUD's learning deficits, as well as when

this may occur in the addiction process. For example, a recent compu-

tational analysis of reversal learning data in Stimulant Use Disorder

also found greater win-switch and lose-switch behaviour. This was

linked to lower reward sensitivity and higher punishment sensitivity,

respectively.43 In comparison, participants with Binge Eating Disorder

(who share clinical characteristics with PwMUD) have also been

shown to have greater overall switching, though this was instead

associated with deficits in updating the value of alternative (non-

chosen) options.45 Furthermore, while animal models may provide

support that learning deficits are the result of chronic methamphet-

amine use,15,16,19 recent studies have also identified that such

difficulties may predate substance use and play a role towards

increased methamphetamine self-administration.46 Although further

clinical research is required, our finding of exacerbated learning defi-

cits in PwMUD with more severe patterns of use appears compatible

with both scenarios.

From a theoretical standpoint, our work outlines a new perspec-

tive of choice behaviour in PwMUD. Previously, behaviour amongst

this population has been described as rigid, habitual or persevera-

tive.47,48 However, our sample of PwMUD behaved contradictory to

such descriptions, acting inconsistently and being overly eager to

change responses. As such, it may be that what appears to be ‘com-

pulsive’ behaviour in PwMUD instead reflects difficulties in learning

adaptive behaviour. At a therapeutic level, deficits in probabilistic

reinforcement learning may explain why treatments such as CM are

efficacious for PwMUD.22 While this may seem counter-intuitive, due

to CM's reliance on similar learning systems required for PRLT perfor-

mance, these interventions may overcome PwMUD's deficits via

increases in the immediacy/tangibility of reinforcement. This is

supported by evidence identifying greater benefits amongst stimulant

users when reinforcer magnitude and immediacy are increased.49,50

Finally, at a psychological level, adopting a view that methamphet-

amine problems are partly due to an amenable learning difficulty may

be more motivating to clients and clinicians, compared with a compul-

sivity narrative sometimes associated with hopelessness.24

Study strengths include the fine-grained analysis that allowed us

to differentiate reinforcement learning and cognitive inflexibility. Fur-

thermore, we recruited PwMUD from different treatment and

sociodemographic settings, increasing the representativeness of our

treatment-seeking sample. Finally, identifying controls with similar

sociodemographic characteristics prevented the impact of age, sex,

education and IQ. Regarding limitations, one major consideration is

that our task did not provide participants with any tangible positive

rewards for accurate performance (i.e., beyond game points). Thus, it

is possible that PwMUD may have been less interested in the task,

compared with controls. Still, such a concern is mitigated by our con-

trol analyses, which identified adequate attention and motivation in

the PwMUD group. Readers should also consider that the PRLT is a

generalised measure that does not reference substance use. There-

fore, while we identified domain-general learning deficits, it may be

that PwMUD's inflexibility is restricted to methamphetamine-based

contingencies. Relatedly, while these deficits were present in a novel,

dynamic task (i.e., including learning and shifting components), it is

possible that PwMUD may struggle adapting behaviours learnt prior

to chronic methamphetamine consumption (as found in some rodent

studies13,18). Furthermore, despite the comprehensiveness of our

modelling procedure, our sample size may have had insufficient

power to detect more subtle, three-way interactions. Finally, we

allowed the inclusion of additional mental health diagnoses and sec-

ondary alcohol/drug use in our PwMUD group, without the aid of a

standardised diagnostic interviews. Although this makes it difficult to

ascribe group differences in task performance solely to MUD, such

characteristics are also representative of treatment-seeking

populations.8
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5 | CONCLUSION

We found that decision-making problems frequently ascribed to

inflexibility in PwMUD were better explained by deficits in reinforce-

ment learning. These findings challenge the ‘compulsive’ stereotype
often applied to PwMUD and support the use of treatment

approaches targeting contingency-based learning.
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